Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 985
Filtrar
1.
Environ Int ; 186: 108608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554503

RESUMO

Bumblebees are among the most important wild bees for pollination of crops and securing wildflower diversity. However, their abundance and diversity have been on a steady decrease in the last decades. One of the most important factors leading to their decline is the frequent use of plant protection products (PPPs) in agriculture, which spread into forests and natural reserves. Mixtures of different PPPs pose a particular threat because of possible synergistic effects. While there is a comparatively large body of studies on the effects of PPPs on honeybees, we still lack data on wild bees. We here investigated the influence of the frequent fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their combination on bumblebees. Cognitive performance and foraging flights of bumblebees were studied. They are essential for the provisioning and survival of the colony. We introduce a novel method for testing four treatments simultaneously on the same colony, minimizing inter-colony differences. For this, we successfully quartered the colony and moved the queen daily between compartments. Bumblebees appeared astonishingly resilient to the PPPs tested or they have developed mechanisms for detoxification. Neither learning capacity nor flight activity were inhibited by treatment with the single PPPs or their combination.


Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Neonicotinoides , Niacinamida/análogos & derivados , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Fungicidas Industriais/toxicidade , Estrobilurinas , Inseticidas/toxicidade , Piridinas/toxicidade
3.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055941

RESUMO

The nest-scavenging beetle Aethina tumida remains a persistent problem for beekeepers in parts of the Southeast United States, where warm wet soils allow beetle populations to grow rapidly and overwhelm colonies, especially during the summer dearth. Furthermore, small hive beetle infestation prevents beekeepers from easily provisioning colonies with additional pollen or protein feed (patties), preventing holistic management of honey bee health via improved nutrition, and reducing the economic potential of package and nucleus colony rearing in the Southeast. Here, we demonstrate using both in vitro laboratory trials and a small in vivo field trial that the differential specificity of anthranilic diamide insecticides (specifically, chlorantraniliprole) between bees and beetles allows for the control and prevention of small hive beetle infestation in honey bee colonies even when feeding with large patties. Honey bees show orders of magnitude higher tolerance to chlorantraniliprole compared to small hive beetles, opening new avenues for improving bee health including during spring splits and throughout the summer.


Assuntos
Abelhas , Besouros , Inseticidas , ortoaminobenzoatos , Animais , Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Besouros/efeitos dos fármacos , Diamida , Himenópteros/efeitos dos fármacos , Inseticidas/farmacologia , ortoaminobenzoatos/farmacologia
4.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055943

RESUMO

Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to infectious diseases. Good hive management including the occasional application of antibiotics can help mitigate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for disease management as well as to support hive health and sustainability within the apicultural industry. We draw attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest beneficial microbes could be an effective method for improving disease resistance in honey bees. However, colony level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally designed to test defined microbial compositions against specific diseases of interest.


Assuntos
Criação de Abelhas , Abelhas , Fermentação , Microbioma Gastrointestinal , Probióticos , Animais , Antibacterianos/imunologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criação de Abelhas/métodos , Abelhas/efeitos dos fármacos , Abelhas/imunologia , Abelhas/microbiologia , Fermentação/imunologia , Microbioma Gastrointestinal/imunologia , Probióticos/farmacologia , Probióticos/uso terapêutico
5.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055946

RESUMO

The ectoparasitic mite, Varroa destructor (Anderson and Trueman), is the leading cause of western honey bee colony, Apis mellifera (L.), mortality in the United States. Due to mounting evidence of resistance to certain approved miticides, beekeepers are struggling to keep their colonies alive. To date, there are varied but limited approved options for V. destructor control. Vaporized oxalic acid (OA) has proven to be an effective treatment against the dispersal phase of V. destructor but has its limitations since the vapor cannot penetrate the protective wax cap of honey bee pupal cells where V. destructor reproduces. In the Southeastern United States, honey bee colonies often maintain brood throughout the year, limiting the usefulness of OA. Prior studies have shown that even repeated applications of OA while brood is present are ineffective at decreasing mite populations. In the summer of 2021, we studied whether incorporating a forced brood break while vaporizing with OA would be an effective treatment against V. destructor. Ninety experimental colonies were divided into 2 blocks, one with a brood break and the other with no brood break. Within the blocks, each colony was randomly assigned 1 of 3 treatments: no OA, 2 g OA, or 3 g OA. The combination of vaporizing with OA and a forced brood break increased mite mortality by 5× and reduced mite populations significantly. These results give beekeepers in mild climates an additional integrated pest management method for controlling V. destructor during the summer season.


Assuntos
Acaricidas , Criação de Abelhas , Abelhas , Ácido Oxálico , Varroidae , Animais , Abelhas/efeitos dos fármacos , Abelhas/parasitologia , Himenópteros/efeitos dos fármacos , Himenópteros/parasitologia , Ácido Oxálico/farmacologia , Estações do Ano , Varroidae/efeitos dos fármacos , Volatilização , Acaricidas/farmacologia , Criação de Abelhas/métodos , Cruzamento/métodos
6.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055948

RESUMO

Because nontarget, beneficials, like insect pollinators, may be exposed unintentionally to insecticides, it is important to evaluate the impact of chemical controls on the behaviors performed by insect pollinators in field trials. Here we examine the impact of a portable mosquito repeller, which emits prallethrin, a pyrethroid insecticide, on honey bee foraging and recruitment using a blinded, randomized, paired, parallel group trial. We found no significant effect of the volatilized insecticide on foraging frequency (our primary outcome), waggle dance propensity, waggle dance frequency, and feeder persistency (our secondary outcomes), even though an additional deposition study confirmed that the treatment device was performing appropriately. These results may be useful to consumers that are interested in repelling mosquitos, but also concerned about potential consequences to beneficial insects, such as honey bees.


Assuntos
Abelhas , Comportamento Animal , Culicidae , Inseticidas , Piretrinas , Animais , Comunicação Animal , Comportamento Apetitivo/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Piretrinas/farmacologia
7.
Science ; 376(6597): 1122-1126, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653462

RESUMO

Insects are facing a multitude of anthropogenic stressors, and the recent decline in their biodiversity is threatening ecosystems and economies across the globe. We investigated the impact of glyphosate, the most commonly used herbicide worldwide, on bumblebees. Bumblebee colonies maintain their brood at high temperatures via active thermogenesis, a prerequisite for colony growth and reproduction. Using a within-colony comparative approach to examine the effects of long-term glyphosate exposure on both individual and collective thermoregulation, we found that whereas effects are weak at the level of the individual, the collective ability to maintain the necessary high brood temperatures is decreased by more than 25% during periods of resource limitation. For pollinators in our heavily stressed ecosystems, glyphosate exposure carries hidden costs that have so far been largely overlooked.


Assuntos
Abelhas , Regulação da Temperatura Corporal , Exposição Ambiental , Glicina/análogos & derivados , Herbicidas , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Ecossistema , Glicina/toxicidade , Herbicidas/toxicidade
8.
Science ; 376(6597): 1051-1052, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653485
9.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137133

RESUMO

Honey bees (Linnaeus, Hymenoptera: Apidae) are widely used as commercial pollinators and commonly forage in agricultural and urban landscapes containing neonicotinoid-treated plants. Previous research has demonstrated that honey bees display adverse behavioral and cognitive effects after treatment with sublethal doses of neonicotinoids. In laboratory studies, honey bees simultaneously increase their proportional intake of neonicotinoid-treated solutions and decrease their total solution consumption to some concentrations of certain neonicotinoids. These findings suggest that neonicotinoids might elicit a suboptimal response in honey bees, in which they forage preferentially on foods containing pesticides, effectively increasing their exposure, while also decreasing their total food intake; however, behavioral responses in semifield and field conditions are less understood. Here we conducted a feeder experiment with freely flying bees to determine the effects of a sublethal, field-realistic concentration of imidacloprid (IMD) on the foraging and recruitment behaviors of honey bees visiting either a control feeder containing a sucrose solution or a treatment feeder containing the same sucrose solution with IMD. We report that IMD-treated honey bees foraged less frequently (-28%) and persistently (-66%) than control foragers. Recruitment behaviors (dance frequency and dance propensity) also decreased with IMD, but nonsignificantly. Our results suggest that neonicotinoids inhibit honey bee foraging, which could potentially decrease food intake and adversely affect colony health.


Assuntos
Comportamento Apetitivo , Abelhas/efeitos dos fármacos , Inseticidas , Neonicotinoides , Animais , Abelhas/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Sacarose
10.
Commun Biol ; 5(1): 141, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177754

RESUMO

Drone honey bees (Apis mellifera) are the obligate sexual partners of queens, and the availability of healthy, high-quality drones directly affects a queen's fertility and productivity. Yet, our understanding of how stressors affect adult drone fertility, survival, and physiology is presently limited. Here, we investigated sex biases in susceptibility to abiotic stressors (cold stress, topical imidacloprid exposure, and topical exposure to a realistic cocktail of pesticides). We found that drones (haploid males) were more sensitive to cold and imidacloprid exposure than workers (sterile, diploid females), but the cocktail was not toxic at the concentrations tested. We corroborated this lack of cocktail toxicity with in-hive exposures via pollen feeding. We then used quantitative proteomics to investigate protein expression profiles in the hemolymph of topically exposed workers and drones, and found that 34 proteins were differentially expressed in exposed drones relative to controls, but none were differentially expressed in exposed workers. Contrary to our hypothesis, we show that drones express surprisingly high baseline levels of putative stress response proteins relative to workers. This suggests that drones' stress tolerance systems are fundamentally rewired relative to workers, and susceptibility to stress depends on more than simply gene dose or allelic diversity.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Temperatura Baixa , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Praguicidas/toxicidade , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Fatores Sexuais , Estresse Fisiológico
11.
PLoS One ; 17(2): e0240950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213539

RESUMO

The European honey bee, Apis mellifera L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and 1/100 of LD50 and measured their heat tolerance 4 h post-feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2 ˚C to 5 ˚C greater than that of the control group, and 67%-87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperatures.


Assuntos
Abelhas/efeitos dos fármacos , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Termotolerância/efeitos dos fármacos , Animais , Abelhas/fisiologia , Mudança Climática , Polinização/efeitos dos fármacos
13.
Pestic Biochem Physiol ; 180: 104994, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34955187

RESUMO

Honey bees are important and highly efficient pollinators of agricultural crops and have been negatively affected by insecticides in recent years. Circular RNA (circRNA) plays an important role in the regulation of multiple biological and pathological processes; however, its role in the honey bee brain after exposure to dinotefuran is not well understood. Here, the expression profiles and potential modulation networks of circRNAs in the brains of workers (Apis mellifera) were comprehensively investigated using RNA sequencing and bioinformatics. In total, 33, 144, and 211 differentially expressed (DE) circRNAs were identified on the 1st, 5th and 10th days after exposure to dinotefuran, respectively. Enrichment analyses revealed that the host genes of DE circRNAs were enriched in the Hippo signaling pathway-fly, Wnt signaling pathway, and neuroactive ligand-receptor interaction. circ_0002266, circ_0005080, circ_0010239 and circ_0005415 were found to have translational potential due to the presence of an internal ribosome entry site (IRES). An integrated analysis of the DE circRNA-miRNA-mRNA networks suggest that circ_0008898 and circ_0001829 may participate in the immune response to dinotefuran exposure by acting as miRNA sponges. Our results provide invaluable basic data on A. mellifera brain circRNA patterns and a molecular basis for further study of the biological function of circRNAs in the development and immune response of honey bees.


Assuntos
Abelhas , Guanidinas/toxicidade , Neonicotinoides , Nitrocompostos/toxicidade , RNA Circular , Animais , Abelhas/efeitos dos fármacos , Abelhas/genética , Encéfalo/efeitos dos fármacos , Redes Reguladoras de Genes , Via de Sinalização Hippo , Neonicotinoides/toxicidade , Via de Sinalização Wnt
14.
Environ Toxicol Pharmacol ; 90: 103792, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34971799

RESUMO

Honeybees show an important pollination ability and play vital roles in improving crop yields and increasing plant genetic diversity, thereby generating tremendous economic benefits for humans. However, honeybee survival is affected by a number of biological and abiotic stresses, including the effects of fungi, bacteria, viruses, parasites, and especially agrochemicals. Glyphosate, a broad-spectrum herbicide that is primarily used for weed control in agriculture, has been reported to have lethal and sublethal effects on honeybees. Here, we summarize recent advances in research on the effects of glyphosate on honeybees, including effects on their behaviors, growth and development, metabolic processes, and immune defense, providing a detailed reference for studying the mechanism of action of pesticides. Furthermore, we provide possible directions for future research on glyphosate toxicity to honeybees.


Assuntos
Abelhas/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Comportamento Animal/efeitos dos fármacos , Glicina/toxicidade
15.
Environ Pollut ; 293: 118610, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34861333

RESUMO

The worldwide decline of pollinators is of growing concern and has been related to the use of insecticides. Solitary bees are potentially exposed to many insecticides through contaminated pollen and/or nectar. The kinetics of these compounds in solitary bees is, however, unknown, limiting the use of these important pollinators in pesticide regulations. Here, the toxicokinetics (TK) of chlorpyrifos (as Dursban 480 EC), cypermethrin (Sherpa 100 EC), and acetamiprid (Mospilan 20 SP) was studied for the first time in Osmia bicornis females at sublethal concentrations (near LC20s). The TK of the insecticides was analysed in bees continuously exposed to insecticide-contaminated food in the uptake phase followed by feeding with clean food in the decontamination phase. The TK models differed substantially between the insecticides. Acetamiprid followed the classic one-compartment model with gradual accumulation during the uptake phase followed by depuration during the decontamination phase. Cypermethrin accumulated rapidly in the first two days and then its concentration decreased slowly. Chlorpyrifos accumulated similarly rapidly but no substantial depuration was found until the end of the experiment. Our study demonstrates that some insecticides can harm solitary bees when exposed continuously even at trace concentrations in food because of their constant accumulation leading to time-reinforced toxicity.


Assuntos
Abelhas/efeitos dos fármacos , Clorpirifos , Inseticidas , Animais , Clorpirifos/toxicidade , Feminino , Inseticidas/toxicidade , Néctar de Plantas , Pólen , Toxicocinética
16.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723328

RESUMO

Honey bee (Apis mellifera L.) colonies that pollinate California's almond orchards are often exposed to mixtures of agrochemicals. Although agrochemicals applied during almond bloom are typically considered bee-safe when applied alone, their combined effects to honey bees are largely untested. In recent years, beekeepers providing pollination services to California's almond orchards have reported reductions in queen quality during and immediately after bloom, raising concerns that pesticide exposure may be involved. Previous research identified a synergistic effect between the insecticide active ingredient chlorantraniliprole and the fungicide active ingredient propiconazole to lab-reared worker brood, but their effects to developing queens are unknown. To test the individual and combined effects of these pesticides on the survival and emergence of developing queens, we fed worker honey bees in closed queen rearing boxes with pollen artificially contaminated with formulated pesticides containing these active ingredients as well as the spray adjuvant Dyne-Amic, which contains both organosilicone and alkyphenol ethoxylate. The translocation of pesticides from pesticide-treated pollen into the royal jelly secretions of nurse bees was also measured. Despite consistently low levels of all pesticide active ingredients in royal jelly, the survival of queens from pupation to 7 d post-emergence were reduced in queens reared by worker bees fed pollen containing a combination of formulated chlorantraniliprole (Altacor), propiconazole (Tilt), and Dyne-Amic, as well as the toxic standard, diflubenzuron (Dimilin 2L), applied in isolation. These results support recommendations to protect honey bee health by avoiding application of pesticide tank-mixes containing insecticides and adjuvants during almond bloom.


Assuntos
Abelhas , Inseticidas , Praguicidas , Pólen/química , Prunus dulcis , Agroquímicos/efeitos adversos , Animais , Abelhas/efeitos dos fármacos , Diflubenzuron/efeitos adversos , Feminino , Inseticidas/efeitos adversos , Praguicidas/efeitos adversos
17.
Sci Rep ; 11(1): 21653, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741036

RESUMO

Pollinators, particularly wild bees, are suffering declines across the globe, and pesticides are thought to be drivers of these declines. Research into, and regulation of pesticides has focused on the active ingredients, and their impact on bee health. In contrast, the additional components in pesticide formulations have been overlooked as potential threats. By testing an acute oral dose of the fungicide product Amistar, and equivalent doses of each individual co-formulant, we were able to measure the toxicity of the formulation and identify the ingredient responsible. We found that a co-formulant, alcohol ethoxylates, caused a range of damage to bumble bee health. Exposure to alcohol ethoxylates caused 30% mortality and a range of sublethal effects. Alcohol ethoxylates treated bees consumed half as much sucrose as negative control bees over the course of the experiment and lost weight. Alcohol ethoxylates treated bees had significant melanisation of their midguts, evidence of gut damage. We suggest that this gut damage explains the reduction in appetite, weight loss and mortality, with bees dying from energy depletion. Our results demonstrate that sublethal impacts of pesticide formulations need to be considered during regulatory consideration, and that co-formulants can be more toxic than active ingredients.


Assuntos
Abelhas/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Pirimidinas/toxicidade , Estrobilurinas/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Sacarose
18.
Front Immunol ; 12: 747848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804032

RESUMO

Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically important plant pollinators. High average annual losses of honey bee colonies in the US have been partially attributed to agrochemical exposure and virus infections. To examine the potential negative synergistic impacts of agrochemical exposure and virus infection, as well as the potential promise of phytochemicals to ameliorate the impact of pathogenic infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus, deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds. Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3) clothianidin, a grower-applied insecticide. We determined that virus abundance was lower in honey bees fed 0.16 ppm thyme oil augmented sucrose syrup, compared to bees fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator, compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had lower virus levels, likely because consuming a near lethal dose of insecticide made them poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/imunologia , Abelhas/virologia , Praguicidas/toxicidade , Viroses/imunologia , Animais , Cicloexanos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Expressão Gênica/efeitos dos fármacos , Guanidinas/farmacologia , Neonicotinoides/farmacologia , Óleos de Plantas/farmacologia , Sesquiterpenos/farmacologia , Tiazóis/farmacologia , Timol/farmacologia , Thymus (Planta)
19.
Biomolecules ; 11(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572588

RESUMO

The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light.


Assuntos
Abelhas/fisiologia , Octopamina/farmacologia , Tiramina/farmacologia , Visão Ocular/fisiologia , Animais , Abelhas/efeitos dos fármacos , Eletrorretinografia , Comportamento Alimentar/efeitos dos fármacos , Fototaxia/efeitos dos fármacos , Estatística como Assunto , Visão Ocular/efeitos dos fármacos
20.
Sci Rep ; 11(1): 18311, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526585

RESUMO

The adipokinetic hormone (AKH) of insects is considered an equivalent of the mammalian hormone glucagon as it induces fast mobilization of carbohydrates and lipids from the fat body upon starvation. Yet, in foraging honey bees, which lack fat body storage for carbohydrates, it was suggested that AKH may have lost its original function. Here we manipulated the energy budget of bee foragers to determine the effect of AKH on appetitive responses. As AKH participates in a cascade leading to acceptance of unpalatable substances in starved Drosophila, we also assessed its effect on foragers presented with sucrose solution spiked with salicin. Starved and partially-fed bees were topically exposed with different doses of AKH to determine if this hormone modifies food ingestion and sucrose responsiveness. We found a significant effect of the energy budget (i.e. starved vs. partially-fed) on the decision to ingest or respond to both pure sucrose solution and sucrose solution spiked with salicin, but no effect of AKH per se. These results are consistent with a loss of function of AKH in honey bee foragers, in accordance with a social life that implies storing energy resources in the hive, in amounts that exceed individual needs.


Assuntos
Abelhas/fisiologia , Metabolismo Energético , Comportamento Alimentar , Hormônios de Inseto/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Abelhas/efeitos dos fármacos , Comportamento Animal , Metabolismo Energético/efeitos dos fármacos , Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Ácido Pirrolidonocarboxílico/metabolismo , Ácido Pirrolidonocarboxílico/farmacologia , Inanição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...